Linux内核中使用的C语言技巧
下面是Linux内核中常常使用到的C语言技巧,比较实用,小伙伴们学起来!注意需要GCC编译器才支持这些特性。
typeof的使用
下面是我们常用的返回最大值宏定义,这个写法存在一些问题。
#define max(a,b) ((a) > (b) ? (a) : (b))
如果a传入i++,b传入j++,那么这个比较大小就会出错。例如:
#define max(a,b) ((a)>(b)?(a):(b))
int x = 1, y = 2;
printf("max=%d\n", max(x++, y++));
printf("x = %d, y = %d\n", x, y);
上面代码输出:max=2,x=2,y=4,结果是错误。为修改此宏,可以定义一个变量将a和b的值分别赋给该变量,并将该变量作为参数传递给max宏进行比较。在GNU C语言中,可以使用以下代码实现:
#define max(a,b) ({ \
int _a = (a); \
int _b = (b); \
_a > _b ? _a : _b; })
如果不知道具体的数据类型,可以使用typeof类转换宏,Linux内核中的例子:
#define max(a, b) ({ \
typeof(a) _a = (a); \
typeof(b) _b = (b); \
(void) (&_a == &_b); \
_a > _b ? _a : _b; })
- typeof(a) _a = (a):定义一个a类型的变量_a,将a赋值给_a
- typeof(b) _b = (b):定义一个b类型的变量_b,将b赋值给_b
- (void) (&_a == &_b):判断两个数的类型是否相同,如果不相同,会抛出一个警告。因为a和b的类型不一样,其指针类型也会不一样,两个不一样的指针类型进行比较操作,会抛出警告。
typeof用法举例:
//typeof的参数可以是表达式或类型
//参数是类型
typeof(int *) a,b;//等价于:int *a,*b;
//参数是表达式
int foo();
typeof(foo()) var;//声明了int类型的var变量,因为表达式foo()是int类型的。由于表达式不会被执行,所以不会调用foo函数。
柔性数组
柔性数组,也称为零长数组,主要用于变长结构体。因此,它有时被称为变长数组。使用方法是在结构体的末尾声明一个长度为0的数组,从而使该结构体具有可变长度。对于编译器来说,长度为0的数组不占用空间,因为数组名本身只是一个偏移量,代表了一个不可修改的地址常量符号。
结构体中定义零长数组:
<mm/percpu.c>
struct pcpu_chunk {
struct list_head list;
unsigned long populated[]; /* 变长数组 */
};
数据结构最后一个元素被定义为零长度数组,不占结构体空间。这样,我们可以根据对象大小动态地分配结构的大小。
struct line {
int length;
char contents[0];
};
struct line *thisline = malloc(sizeof(struct line) + this_length);
thisline->length = this_length;
如上例所示,struct line数据结构定义了一个int length变量和一个变长数组contents[0],这个struct line数据结构的大小只包含int类型的大小,不包含contents的大小,也就是sizeof (struct line) = sizeof (int)。
创建结构体对象时,可根据实际的需要指定这个可变长数组的长度,并分配相应的空间,如上述实例代码分配了this_length 字节的内存,并且可以通过contents[index]来访问第index个地址的数据。
case范围
GNU C语言支持指定一个case的范围作为一个标签,如:
case low ...high:
case 'A' ...'Z':
这里low到high表示一个区间范围,在ASCII字符代码中也非常有用。下面是Linux内核中的代码例子。
<arch/x86/platform/uv/tlb_uv.c>
static int local_atoi(const char *name){
int val = 0;
for (;; name++) {
switch (*name) {
case '0' ...'9':
val = 10*val+(*name-'0');
break;
default:
return val;
}
}
}
另外,还可以用整形数来表示范围,但是这里需要注意在“…”两边有空格,否则编译会出错。
<drivers/usb/gadget/udc/at91_udc.c>
static int at91sam9261_udc_init(struct at91_udc *udc){
for (i = 0; i < NUM_ENDPOINTS; i++) {
ep = &udc->ep[i];
switch (i) {
case 0:
ep->maxpacket = 8;
break;
case 1 ... 3:
ep->maxpacket = 64;
break;
case 4 ... 5:
ep->maxpacket = 256;
break;
}
}
}
标号元素
GNU C语言可以通过指定索引或结构体成员名来初始化,不必按照原来的固定顺序进行初始化。
结构体成员的初始化在 Linux 内核中经常使用,如在设备驱动中初始化file_operations数据结构:
<drivers/char/mem.c>
static const struct file_operations zero_fops = {
.llseek = zero_lseek,
.read = new_sync_read,
.write = write_zero,
.read_iter = read_iter_zero,
.aio_write = aio_write_zero,
.mmap = mmap_zero,
};
如上述代码中的zero_fops的成员llseek初始化为zero_lseek函数,read成员初始化为new_sync_read函数,依次类推。当file_operations数据结构的定义发生变化时,这种初始化方法依然能保证已知元素的正确性,对于未初始化成员的值为0或者NULL。
可变参数宏
在GNU C语言中,宏可以接受可变数目的参数,主要用在输出函数里。例如:
<include/linux/printk.h>
#define pr_debug(fmt, ...) \
dynamic_pr_debug(fmt, ##__VA_ARGS__)
“…”代表一个可以变化的参数表,“VA_ARGS”是编译器保留字段,预处理时把参数传递给宏。当宏的调用展开时,实际参数就传递给dynamic_pr_debug函数了。
UL 的使用
在Linux内核代码中,我们经常会看到一些数字的定义使用了UL后缀修饰。
数字常量会被隐形定义为int类型,两个int类型相加的结果可能会发生溢出。
因此使用UL强制把int类型数据转换为unsigned long类型,这是为了保证运算过程不会因为int的位数不同而导致溢出。
- 1 :表示有符号整型数字1
- UL:表示无符号长整型数字1